233 research outputs found

    Physiology-based IVIVE predictions of tramadol from in vitro metabolism data

    Get PDF
    To predict the tramadol in vivo pharmacokinetics in adults by using in vitro metabolism data and an in vitro-in vivo extrapolation (IVIVE)-linked physiologically-based pharmacokinetic (PBPK) modeling and simulation approach (SimcypA (R)). Tramadol metabolism data was gathered using metabolite formation in human liver microsomes (HLM) and recombinant enzyme systems (rCYP). Hepatic intrinsic clearance (CLint(H)) was (i) estimated from HLM corrected for specific CYP450 contributions from a chemical inhibition assay (model 1); (ii) obtained in rCYP and corrected for specific CYP450 contributions by study-specific intersystem extrapolation factor (ISEF) values (model 2); and (iii) scaled back from in vivo observed clearance values (model 3). The model-predicted clearances of these three models were evaluated against observed clearance values in terms of relative difference of their geometric means, the fold difference of their coefficients of variation, and relative CYP2D6 contribution. Model 1 underpredicted, while model 2 overpredicted the total tramadol clearance by -27 and +22%, respectively. The CYP2D6 contribution was underestimated in both models 1 and 2. Also, the variability on the clearance of those models was slightly underpredicted. Additionally, blood-to-plasma ratio and hepatic uptake factor were identified as most influential factors in the prediction of the hepatic clearance using a sensitivity analysis. IVIVE-PBPK proved to be a useful tool in combining tramadol's low turnover in vitro metabolism data with system-specific physiological information to come up with reliable PK predictions in adults

    Influence of Drug Transport Proteins on the Pharmacokinetics and Drug Interactions of Hiv Protease Inhibitors

    Get PDF
    Protease inhibitors, a class of antiretroviral agents frequently used in the treatment of HIV infection, interact with numerous transport proteins resulting in clinically significant drug-drug interactions (DDIs). This review focuses on the proteins that transport protease inhibitors and directly influence the pharmacokinetics of these drugs, as well as the transport proteins that are inhibited or induced by protease inhibitors. Clinically relevant DDIs involving drug transporters and protease inhibitors, either as "victim" drugs or as "perpetrator" drugs, and the pharmacokinetic consequences of such interactions are highlighted. A summary of transporter-mediated processes underlying the toxicity of protease inhibitors is provided. Finally, the effect of HIV infection or co-infection on drug transport proteins, and the implications for protease inhibitor pharmacokinetics is discussed. Transport proteins significantly influence the pharmacokinetics, efficacy and toxicity profiles of this important class of drugs

    Antihistamine use during breastfeeding with focus on breast milk transfer and safety in humans - a systematic literature review.

    Get PDF
    Current data on use of antihistamines during breastfeeding and risks to the breastfed infant are insufficient. The aim of this systematic review was to provide an overview of studies measuring the levels of antihistamines in human breast milk, estimating the exposure for breastfed infants, and/or reporting possible adverse effects on the breastfed infant. An additional aim was to review the antihistamine product labels available in EU and the US. We searched seven online databases and identified seven human lactation studies that included 25 mother-infant pairs covering cetirizine, clemastine, ebastine, epinastine, loratadine, terfenadine and triprolidine. In addition, one study investigated the impact of chlorpheniramine or promethazine on prolactin levels among 17 women, and one study investigated possible adverse drug reactions in 85 breastfed infants exposed to various antihistamines. The relative infant dose was below 5% for all antihistamines, ranging from 0.3% for terfenadine to 4.5% for clemastine. Most product labels of the ten antihistamines with available information in both EU and the US, reported lack of evidence and recommended to avoid use during breastfeeding. The knowledge gap on antihistamines and lactation is extensive, and further human studies are warranted to ensure optimal treatment of breastfeeding women with allergy

    Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study

    Get PDF
    The short-chain fatty acids (SCFAs), acetate, propionate and butyrate, are bacterial metabolites that mediate the interaction between the diet, the microbiota and the host. In the present study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13C-SCFAs 13C-glucose, 13C-cholesterol and 13C-fatty acids were measured. The butyrate-producing capacity of the intestinal microbiota was also quantified. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13CO2, whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFA production from 13C-labelled fibres in the human colon by measurement of 13C-labelled SCFA concentrations in blood

    Case Report:Bosentan and Sildenafil Exposure in Human Milk - A Contribution From the ConcePTION Project

    Get PDF
    Introduction: Quantitative information on disposition of maternal medicines in human milk remains a major knowledge gap. This case report presents the clinical and pharmacokinetic data of a single mother-infant pair exposed to bosentan and sildenafil for the treatment of pulmonary arterial hypertension (PAH) during lactation. Case presentation: A 43-year old mother was treated with sildenafil (20 mg, 3x/day) and bosentan (125 mg, 2x/day) for PAH. Her 21-months old infant received breastfeeding in combination with adequate complementary foods. Milk samples were collected over 24 h, at day 637 and 651 after delivery. The observed average steady-state concentrations of sildenafil (2.84 μg/L) and bosentan (49.0 μg/L) in human milk were low. The Daily Infant Dosage ingested by the nursing infant through human milk was 0.02 μg/kg/day for sildenafil and 0.29 μg/kg/day for bosentan at day 637, and 0.03 μg/kg/day and 0.60 μg/kg/day at day 651. The Relative Infant Dose calculated for an exclusively breastfed infant with an estimated milk intake of 150 ml/kg/day, was 0.06% for sildenafil and 0.24% for bosentan. General health outcome of the infant, reported by the mother, was uneventful until the sampling days. Conclusion: Low medicine concentrations were found in human milk expressed 21 months after delivery after maternal intake of 20 mg sildenafil three times daily and 125 mg bosentan twice daily. General health of the nursing infant until sampling was reported as optimal by the mother

    Integration of Placental Transfer in a Fetal–Maternal Physiologically Based Pharmacokinetic Model to Characterize Acetaminophen Exposure and Metabolic Clearance in the Fetus

    Get PDF
    Background and Objective: Although acetaminophen is frequently used during pregnancy, little is known about fetal acetaminophen pharmacokinetics. Acetaminophen safety evaluation has typically focused on hepatotoxicity, while other events (fetal ductal closure/constriction) are also relevant. We aimed to develop a fetal–maternal physiologically based pharmacokinetic (PBPK) model (f-m PBPK) to quantitatively predict placental acetaminophen transfer, characterize fetal acetaminophen exposure, and quantify the contributions of specific clearance pathways in the term fetus. Methods: An acetaminophen pregnancy PBPK model was extended with a compartment representing the fetal liver, which included maturation of relevant enzymes. Different approaches to describe placental transfer were evaluated (ex vivo cotyledon perfusion experiments, placental transfer prediction based on Caco-2 cell permeability or physicochemical properties [MoBi®]). Predicted maternal and fetal acetaminophen profiles were compared with in vivo observations. Results: Tested approaches to predict placental t

    In Vitro Hepatic Metabolism Explains Higher Clearance of Voriconazole in Children versus Adults: Role of CYP2C19 and Flavin-Containing Monooxygenase 3

    Get PDF
    Voriconazole is a broad spectrum antifungal agent for treating life-threatening fungal infections. Its clearance is approximately 3-fold higher in children compared with adults. Voriconazole is cleared predominantly via hepatic metabolism in adults, mainly by CYP3A4, CYP2C19, and flavin-containing monooxygenase 3 (FMO3). In vitro metabolism of voriconazole by liver microsomes prepared from pediatric and adult tissues (n = 6/group) mirrored the in vivo clearance differences in children versus adults, and it showed that the oxidative metabolism was significantly faster in children compared with adults as indicated by the in vitro half-life (T1/2) of 33.8 ± 15.3 versus 72.6 ± 23.7 min, respectively. The Km for voriconazole metabolism to N-oxide, the major metabolite formed in humans, by liver microsomes from children and adults was similar (11 ± 5.2 versus 9.3 ± 3.6 μM, respectively). In contrast, apparent Vmax was approximately 3-fold higher in children compared with adults (120.5 ± 99.9 versus 40 ± 13.9 pmol/min/mg). The calculated in vivo clearance from in vitro data was found to be approximately 80% of the observed plasma clearance values in both populations. Metabolism studies in which CYP3A4, CYP2C19, or FMO was selectively inhibited provided evidence that contribution of CYP2C19 and FMO toward voriconazole N-oxidation was much greater in children than in adults, whereas CYP3A4 played a larger role in adults. Although expression of CYP2C19 and FMO3 is not significantly different in children versus adults, these enzymes seem to contribute to higher metabolic clearance of voriconazole in children versus adults

    Higher clearance of micafungin in neonates compared with adults: role of age-dependent micafungin serum binding

    Get PDF
    Micafungin, a new echinocandin antifungal agent, has been widely used for the treatment of various fungal infections in human populations. Micafungin is predominantly cleared by biliary excretion and it binds extensively to plasma proteins (>99.5%). Micafungin body weight-adjusted clearance is higher in neonates than in adults, but the mechanisms underlying this difference are not understood. Previous work had revealed the roles of sinusoidal uptake (Na+-taurocholate co-transporting peptide, NTCP; organic anion transporting polypeptide, OATP) as well as canalicular efflux (bile salt export pump, BSEP; breast cancer resistance protein, BCRP) transporters in micafungin hepatobiliary elimination. In the present study, the relative protein expression of hepatic transporters was compared between liver homogenates from neonates and adults. Also, the extent of micafungin binding to serum from neonates and adults was measured in vitro. The results indicate that relative expression levels of NTCP, OATP1B1/3, BSEP, BCRP, and MRP3 were similar in neonates and in adults. However, micafungin fraction unbound (fu) in neonatal serum was about 8-fold higher than in adult serum (0.033 ± 0.012 versus 0.004 ± 0.001, respectively). While there was no evidence for different intrinsic hepatobiliary clearance of micafungin between neonates and adults, our data suggest that age-dependent serum protein binding of micafungin is responsible for its higher clearance in neonates compared to adults
    corecore